A General Feature Space for Automatic Verb Classification

نویسندگان

  • Eric Joanis
  • Suzanne Stevenson
چکیده

We develop a general feature space for automatic classification of verbs into lexical semantic classes. Previous work was limited in scope by the need for manual selection of discriminating features, through a linguistic analysis of the target verb classes (Merlo and Stevenson, 2001). We instead analyze the classification structure at a higher level, using the possible defining characteristics of classes as the basis for our feature space. The general feature space achieves reductions in error rates of 42– 69%, on a wider range of classes than investigated previously, with comparable performance to feature sets manually selected for the particular classification tasks. Our results show that the approach is generally applicable, and avoids the need for resource-intensive linguistic analysis for each new task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Verb Classification Using a General Feature Space

Automatic Verb Classification Using a General Feature Space Eric Joanis Master of Science Graduate Department of Computer Science University of Toronto 2002 We develop a general feature space that can be used for the semantic classification of English verbs. We design a technique to extract these features from a large corpus of English, while trying to maintain portability to other languages—th...

متن کامل

Automatic Verb Classification Using a

Automatic Verb Classification Using a General Feature Space Eric Joanis Master of Science Graduate Department of Computer Science University of Toronto 2002 We develop a general feature space that can be used for the semantic classification of English verbs. We design a technique to extract these features from a large corpus of English, while trying to maintain portability to other languages—th...

متن کامل

Improving Verb Clustering with Automatically Acquired Selectional Preferences

In previous research in automatic verb classification, syntactic features have proved the most useful features, although manual classifications rely heavily on semantic features. We show, in contrast with previous work, that considerable additional improvement can be obtained by using semantic features in automatic classification: verb selectional preferences acquired from corpus data using a f...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Natural Language Engineering

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2003